Clippings by Lil-Btrfly

 Sort by: Last Updated Post Date Post Title Forum Name 

RE: Growing Trillium Seed (Follow-Up #1)

posted by: lycopus on 06.12.2012 at 11:50 am in Woodlands Forum

They can be cleaned and stratified right away. After the first cold period the seeds will germinate and form roots. After the second cold period they will usually send up a single small leaf.

I have tried forcing them using a fridge and a growth chamber but didn't have much luck after the second cold treatment due to algae and mold forming around the pots. The challenge was keeping them from drying out for all that time and in hindsight a flat would have been better than individual pots. The success rate was much higher just planting them in the field and waiting.

Here is a link that might be useful: Trillium seed propagation

NOTES:

<none>
clipped on: 05.12.2013 at 04:42 pm    last updated on: 05.12.2013 at 05:06 pm

Growing Trillium Seed

posted by: learn2turn on 06.12.2012 at 10:32 am in Woodlands Forum

I have a trillium with that flowed with a capsule that likely has some seed. I read a bit about it's two-year cold cycle when planted and also that 90 day is the minimum for each cycle. I thought I'd try to force some for next year and wanted to check the protocol.

Should it be --

90 days in the fridge.
90 days room temperature.
90 days in the fridge.
Room temperature until sprouts.

Or should it be --

90 days room temperature.
90 days in the fridge.
90 days room temperature.
90 days in the fridge.
Room temperature until sprouts.

Any insight or advice that can be given is appreciated.

NOTES:

<none>
clipped on: 05.12.2013 at 04:38 pm    last updated on: 05.12.2013 at 04:39 pm

Container soils and water in containers (cont.)

posted by: jdwhitaker on 03.25.2006 at 09:39 pm in Container Gardening Forum

Al's original post has reached the maximum of 150 replies, and I think this discussion should continue. I'll start the new thread with a reprint of Al's (tapla's) treatise on container soils and water, and end with a link to the original thread...


CONTAINER SOILS AND WATER IN CONTAINERS
Posted by tapla z5b-6a MI (My Page) on Sat, Mar 19, 05 at 15:57

The following is very long & will be too boring for some to wade through. Two years ago, some of my posts got people curious & they started to e-mail me about soil problems. The "Water Movement" article is an answer I gave in an e-mail. I saved it and adapted it for my bonsai club newsletter & it was subsequently picked up & used by a number of other clubs. I now give talks on container soils and the physics of water movement in containers to area clubs.
I think, as container gardeners, our first priority is to insure aeration for the life of the soil. Since aeration and drainage are inversely linked to soil particle size, it makes good sense to try to find a soil component with particles larger than peat and that will retain its structure for extended periods. Pine bark fits the bill nicely.

The following hits pretty hard against the futility of using a drainage layer in an attempt to improve drainage. It just doesn't work. All it does is reduce the soil available for root colonization. A wick will remove the saturated layer of soil. It works in reverse of the self-watering pots widely being discussed on this forum now. I have no experience with these growing containers, but understand the principle well.

There are potential problems with wick watering that can be alleviated with certain steps. Watch for yellowing leaves with these pots. If they begin to occur, you need to flush the soil well. It is the first sign of chloride damage.

One of the reasons I posted this is because of the number of soil questions I'm getting in my mail. It will be a convenient source for me to link to. I will soon be in the middle of repotting season & my time here will be reduced, unfortunately, for me. I really enjoy all the friends I've made on these forums. ;o)

Since there are many questions about soils appropriate for containers, I'll post by basic mix in case any would like to try it. It will follow the Water Movement info.

Water Movement in Soils

Consider this if you will:

Soil need fill only a few needs in plant culture. Anchorage - A place for roots to extend, securing the plant and preventing it from toppling. Nutrient Sink - It must retain sufficient nutrients to sustain plant systems. Gas Exchange - It must be sufficiently porous to allow air to the root system. And finally, Water - It must retain water enough in liquid and/or vapor form to sustain plants between waterings. Most plants could be grown without soil as long as we can provide air, nutrients, and water, (witness hydroponics). Here, I will concentrate primarily on the movement of water in soil(s).

There are two forces that cause water movement through soil - one is gravity, the other capillary action. Gravity needs little explanation, but for this writing I would like to note: Gravitational flow potential (GFP) is greater for water at the top of the pot than it is for water at the bottom of the pot. I'll return to that later. Capillarity is a function of the natural forces of adhesion and cohesion. Adhesion is water's tendency to stick to solid objects like soil particles and the sides of the pot. Cohesion is the tendency for water to stick to itself. Cohesion is why we often find water in droplet form - because cohesion is at times stronger than adhesion, water�s bond to itself can be stronger than the bond to the object it might be in contact with; in this condition it forms a drop. Capillary action is in evidence when we dip a paper towel in water. The water will soak into the towel and rise several inches above the surface of the water. It will not drain back into the source. It will stop rising when the GFP equals the capillary attraction of the fibers in the paper.

There is, in every pot, what is called a "perched water table" (PWT). This is water that occupies a layer of soil that is always saturated & will not drain at the bottom of the pot. It can evaporate or be used by the plant, but physical forces will not allow it to drain. It is there because the capillary pull of the soil at some point will equal the GFP; therefore, the water does not drain, it is "perched". If we fill five cylinders of varying heights and diameters with the same soil mix and provide each cylinder with a drainage hole, the PWT will be exactly the same height in each container. This is the area of the pot where roots seldom penetrate & where root problems begin due to a lack of aeration. From this we can draw the conclusion that: Tall growing containers are a superior choice over squat containers when using the same soil mix. The reason: The level of the PWT will be the same in each container, with the taller container providing more usable, air holding soil above the PWT. Physiology dictates that plants must be able to take in air at the roots in order to complete transpiration and photosynthesis.

A given volume of large soil particles have less overall surface area in comparison to the same volume of small particles and therefore less overall adhesive attraction to water. So, in soils with large particles, GFP more readily overcomes capillary attraction. They drain better. We all know this, but the reason, often unclear, is that the PWT is lower in coarse soils than in fine soils. The key to good drainage is size and uniformity of soil particles. Large particles mixed with small particles will not improve drainage because the smaller particles fit between the large, increasing surface area which increases the capillary attraction and thus the water holding potential. Water and air cannot occupy the same space at the same time. Contrary to what some hold to be true, sand does not improve drainage. Pumice (aka lava rock), or one of the hi-fired clay products like Turface are good additives which help promote drainage and porosity because of their irregular shape.

Now to the main point: When we use a coarse drainage layer under our soil, it does not improve drainage. It does conserve on the volume of soil required to fill a pot and it makes the pot lighter. When we employ this exercise in an attempt to improve drainage, what we are actually doing is moving the level of the PWT higher in the pot. This reduces available soil for roots to colonize, reduces total usable pot space, and limits potential for beneficial gas exchange. Containers with uniform soil particle size from top of container to bottom will yield better drainage and have a lower PWT than containers with drainage layers. The coarser the drainage layer, the more detrimental to drainage it is because water is more (for lack of a better scientific word) reluctant to make the downward transition because the capillary pull of the soil above the drainage layer is stronger than the GFP. The reason for this is there is far more surface area in the soil for water to be attracted to than there is in the drainage layer.

I know this goes against what most have thought to be true, but the principle is scientifically sound, and experiments have shown it as so. Many nurserymen are now employing the pot-in-pot or the pot-in-trench method of growing to capitalize on the science.

If you discover you need to increase drainage, insert a wick into the pot & allow it to extend from the PWT to several inches below the bottom of the pot. This will successfully eliminate the PWT & give your plants much more soil to grow in as well as allow more, much needed air to the roots.

Uniform size particles of fir, hemlock or pine bark are excellent as the primary component of your soils. The lignin contained in bark keeps it rigid and the rigidity provides air-holding pockets in the root zone far longer than peat or compost mixes that rapidly break down to a soup-like consistency. Bark also contains suberin, a lipid sometimes referred to as nature�s preservative. Suberin is what slows the decomposition of bark-based soils. It contains highly varied hydrocarbon chains and the microorganisms that turn peat to soup have great difficulty cleaving these chains.

In simple terms: Plants that expire because of drainage problems either die of thirst because the roots have rotted and can no longer take up water, or they starve to death because they cannot obtain sufficient air at the root zone for the respiratory or photosynthetic processes.

To confirm the existence of the PWT and the effectiveness of using a wick to remove it, try this experiment: Fill a soft drink cup nearly full of garden soil. Add enough water to fill to the top, being sure all soil is saturated. Punch a drain hole in the bottom of the cup & allow to drain. When the drainage stops, insert a wick several inches up into the drain hole . Take note of how much additional water drains. This is water that occupied the PWT before being drained by the wick. A greatly simplified explanation of what occurs is: The wick "fools" the water into thinking the pot is deeper, so water begins to move downward seeking the "new" bottom of the pot, pulling the rest of the PWT along with it.

Having applied these principles in the culture of my containerized plants, both indoors and out, for many years, the methodology I have adopted has shown to be effective and of great benefit to them. I use many amendments when building my soils, but the basic building process starts with screened bark and perlite. Peat usually plays a very minor role in my container soils because it breaks down rapidly and when it does, it impedes drainage.

My Soil

I'll give two recipes. I usually make big batches.

3 parts pine bark fines
1 part sphagnum peat (not reed or sedge peat)
1-2 parts perlite
garden lime
controlled release fertilizer
micro-nutrient powder (substitute: small amount of good, composted manure

Big batch:

3 cu ft pine bark fines (1 big bag)
5 gallons peat
5 gallons perlite
1 cup lime (you can add more to small portion if needed)
2 cups CRF
1/2 cup micro-nutrient powder or 1 gal composted manure

Small batch:

3 gallons pine bark
1/2 gallon peat
1/2 gallon perlite
handful lime (careful)
1/4 cup CRF
1 tsp micro-nutrient powder or a dash of manure ;o)

I have seen advice that some highly organic soils are productive for up to 5 years. I disagree. Even if you were to substitute fir bark for pine bark in this recipe (and this recipe will far outlast any peat based soil) you should only expect a maximum of three years life before a repot is in order. Usually perennials, including trees (they're perennials too, you know ;o)) should be repotted more frequently to insure vigor closer to genetic potential. If a soil is desired that will retain structure for long periods, we need to look to inorganic amendments. Some examples are crushed granite, pea stone, coarse sand (no smaller than BB size in containers, please), Haydite, lava rock, Turface or Schultz soil conditioner.

I hope this starts a good exchange of ideas & opinions so we all can learn.

Al

Here is a link that might be useful: Container soil discussion 1

NOTES:

<none>
clipped on: 05.12.2013 at 04:02 pm    last updated on: 05.12.2013 at 04:02 pm

Container soils and water in containers (long post)

posted by: tapla on 03.19.2005 at 03:57 pm in Container Gardening Forum

The following is very long & will be too boring for some to wade through. Two years ago, some of my posts got people curious & they started to e-mail me about soil problems. The "Water Movement" article is an answer I gave in an e-mail. I saved it and adapted it for my bonsai club newsletter & it was subsequently picked up & used by a number of other clubs. I now give talks on container soils and the physics of water movement in containers to area clubs.

I think, as container gardeners, our first priority is to insure aeration for the life of the soil. Since aeration and drainage are inversely linked to soil particle size, it makes good sense to try to find a soil component with particles larger than peat and that will retain its structure for extended periods. Pine bark fits the bill nicely.

The following hits pretty hard against the futility of using a drainage layer in an attempt to improve drainage. It just doesn't work. All it does is reduce the soil available for root colonization. A wick will remove the saturated layer of soil. It works in reverse of the self-watering pots widely being discussed on this forum now. I have no experience with these growing containers, but understand the principle well.

There are potential problems with wick watering that can be alleviated with certain steps. Watch for yellowing leaves with these pots. If they begin to occur, you need to flush the soil well. It is the first sign of chloride damage.

One of the reasons I posted this is because of the number of soil questions I'm getting in my mail. It will be a convenient source for me to link to. I will soon be in the middle of repotting season & my time here will be reduced, unfortunately, for me. I really enjoy all the friends I've made on these forums. ;o)

Since there are many questions about soils appropriate for containers, I'll post by basic mix in case any would like to try it. It will follow the Water Movement info.

Water Movement in Soils

Consider this if you will:

Soil need fill only a few needs in plant culture. Anchorage - A place for roots to extend, securing the plant and preventing it from toppling. Nutrient Sink - It must retain sufficient nutrients to sustain plant systems. Gas Exchange - It must be sufficiently porous to allow air to the root system. And finally, Water - It must retain water enough in liquid and/or vapor form to sustain plants between waterings. Most plants could be grown without soil as long as we can provide air, nutrients, and water, (witness hydroponics). Here, I will concentrate primarily on the movement of water in soil(s).

There are two forces that cause water movement through soil - one is gravity, the other capillary action. Gravity needs little explanation, but for this writing I would like to note: Gravitational flow potential (GFP) is greater for water at the top of the pot than it is for water at the bottom of the pot. I'll return to that later. Capillarity is a function of the natural forces of adhesion and cohesion. Adhesion is water's tendency to stick to solid objects like soil particles and the sides of the pot. Cohesion is the tendency for water to stick to itself. Cohesion is why we often find water in droplet form - because cohesion is at times stronger than adhesion, water�s bond to itself can be stronger than the bond to the object it might be in contact with; in this condition it forms a drop. Capillary action is in evidence when we dip a paper towel in water. The water will soak into the towel and rise several inches above the surface of the water. It will not drain back into the source. It will stop rising when the GFP equals the capillary attraction of the fibers in the paper.

There is, in every pot, what is called a "perched water table" (PWT). This is water that occupies a layer of soil that is always saturated & will not drain at the bottom of the pot. It can evaporate or be used by the plant, but physical forces will not allow it to drain. It is there because the capillary pull of the soil at some point will equal the GFP; therefore, the water does not drain, it is "perched". If we fill five cylinders of varying heights and diameters with the same soil mix and provide each cylinder with a drainage hole, the PWT will be exactly the same height in each container. This is the area of the pot where roots seldom penetrate & where root problems begin due to a lack of aeration. From this we can draw the conclusion that: Tall growing containers are a superior choice over squat containers when using the same soil mix. The reason: The level of the PWT will be the same in each container, with the taller container providing more usable, air holding soil above the PWT. Physiology dictates that plants must be able to take in air at the roots in order to complete transpiration and photosynthesis.

A given volume of large soil particles have less overall surface area in comparison to the same volume of small particles and therefore less overall adhesive attraction to water. So, in soils with large particles, GFP more readily overcomes capillary attraction. They drain better. We all know this, but the reason, often unclear, is that the PWT is lower in coarse soils than in fine soils. The key to good drainage is size and uniformity of soil particles. Large particles mixed with small particles will not improve drainage because the smaller particles fit between the large, increasing surface area which increases the capillary attraction and thus the water holding potential. Water and air cannot occupy the same space at the same time. Contrary to what some hold to be true, sand does not improve drainage. Pumice (aka lava rock), or one of the hi-fired clay products like Turface are good additives which help promote drainage and porosity because of their irregular shape.

Now to the main point: When we use a coarse drainage layer under our soil, it does not improve drainage. It does conserve on the volume of soil required to fill a pot and it makes the pot lighter. When we employ this exercise in an attempt to improve drainage, what we are actually doing is moving the level of the PWT higher in the pot. This reduces available soil for roots to colonize, reduces total usable pot space, and limits potential for beneficial gas exchange. Containers with uniform soil particle size from top of container to bottom will yield better drainage and have a lower PWT than containers with drainage layers. The coarser the drainage layer, the more detrimental to drainage it is because water is more (for lack of a better scientific word) reluctant to make the downward transition because the capillary pull of the soil above the drainage layer is stronger than the GFP. The reason for this is there is far more surface area in the soil for water to be attracted to than there is in the drainage layer.

I know this goes against what most have thought to be true, but the principle is scientifically sound, and experiments have shown it as so. Many nurserymen are now employing the pot-in-pot or the pot-in-trench method of growing to capitalize on the science.

If you discover you need to increase drainage, insert a wick into the pot & allow it to extend from the PWT to several inches below the bottom of the pot. This will successfully eliminate the PWT & give your plants much more soil to grow in as well as allow more, much needed air to the roots.

Uniform size particles of fir, hemlock or pine bark are excellent as the primary component of your soils. The lignin contained in bark keeps it rigid and the rigidity provides air-holding pockets in the root zone far longer than peat or compost mixes that rapidly break down to a soup-like consistency. Bark also contains suberin, a lipid sometimes referred to as nature�s preservative. Suberin is what slows the decomposition of bark-based soils. It contains highly varied hydrocarbon chains and the microorganisms that turn peat to soup have great difficulty cleaving these chains.

In simple terms: Plants that expire because of drainage problems either die of thirst because the roots have rotted and can no longer take up water, or they starve to death because they cannot obtain sufficient air at the root zone for the respiratory or photosynthetic processes.

To confirm the existence of the PWT and the effectiveness of using a wick to remove it, try this experiment: Fill a soft drink cup nearly full of garden soil. Add enough water to fill to the top, being sure all soil is saturated. Punch a drain hole in the bottom of the cup & allow to drain. When the drainage stops, insert a wick several inches up into the drain hole . Take note of how much additional water drains. This is water that occupied the PWT before being drained by the wick. A greatly simplified explanation of what occurs is: The wick "fools" the water into thinking the pot is deeper, so water begins to move downward seeking the "new" bottom of the pot, pulling the rest of the PWT along with it.

Having applied these principles in the culture of my containerized plants, both indoors and out, for many years, the methodology I have adopted has shown to be effective and of great benefit to them. I use many amendments when building my soils, but the basic building process starts with screened bark and perlite. Peat usually plays a very minor role in my container soils because it breaks down rapidly and when it does, it impedes drainage.

My Soil

I'll give two recipes. I usually make big batches.

3 parts pine bark fines
1 part sphagnum peat (not reed or sedge peat)
1-2 parts perlite
garden lime
controlled release fertilizer
micro-nutrient powder (substitute: small amount of good, composted manure

Big batch:

3 cu ft pine bark fines (1 big bag)
5 gallons peat
5 gallons perlite
1 cup lime (you can add more to small portion if needed)
2 cups CRF
1/2 cup micro-nutrient powder or 1 gal composted manure

Small batch:

3 gallons pine bark
1/2 gallon peat
1/2 gallon perlite
handful lime (careful)
1/4 cup CRF
1 tsp micro-nutrient powder or a dash of manure ;o)

I have seen advice that some highly organic soils are productive for up to 5 years. I disagree. Even if you were to substitute fir bark for pine bark in this recipe (and this recipe will far outlast any peat based soil) you should only expect a maximum of three years life before a repot is in order. Usually perennials, including trees (they're perennials too, you know ;o)) should be repotted more frequently to insure vigor closer to genetic potential. If a soil is desired that will retain structure for long periods, we need to look to inorganic amendments. Some examples are crushed granite, pea stone, coarse sand (no smaller than BB size in containers, please), Haydite, lava rock, Turface or Schultz soil conditioner.

I hope this starts a good exchange of ideas & opinions so we all can learn.

Al

NOTES:

<none>
clipped on: 05.12.2013 at 03:31 pm    last updated on: 05.12.2013 at 04:00 pm

Fertilizer Program - Containerized Plants (Long Post)

posted by: tapla on 10.23.2007 at 08:21 pm in Container Gardening Forum

This subject has been discussed frequently, but in piecemeal fashion on the Container Gardening and other forums related. Prompted by a question about fertilizers in another's post, I decided to collect a few thoughts & present my personal overview.

Fertilizer Program - Containerized Plants

Let me begin with a brief and hopefully not too technical explanation of how plants absorb water from the soil and the nutrients/solutes that are dissolved in that water. Most of us remember from our biology classes that cells have membranes that are semi-permeable. That is, they allow some things to pass through the walls, like water and whatever is dissolved in it, while excluding other materials. Osmosis is a natural phenomenon that creates a balance (isotonicity) in pressure between liquids and solutes inside and outside the cell. Water and ionic solutes will pass in and out of cell walls until an equilibrium is reached and the level of solutes in the water surrounding the cell is the same as the level of solutes in the cell.

This process begins when the finest roots absorb water molecule by molecule at the cellular level from the surface of soil particles and transport it, along with its nutrient load, throughout the plant. I want to keep this simple, so I�ll just say that the best water absorption occurs when the level of solutes in soil water is lowest, and in the presence of good amounts of oxygen (this is where I get to plug a well-aerated and free-draining soil), ;o) but of course, when the level of solutes is very low, the plant is shorted the building materials (nutrients) it needs to manufacture food and keep its metabolism running smoothly, so it begins to exhibit deficiency symptoms.

We already learned that if the dissolved solutes in soil water are low, the plant may be well hydrated, but starving; however, if they are too high, the plant may have a large store of nutrients in the soil, but because of osmotic pressure, the plant may be unable to absorb the water and could die of thirst in a sea of plenty. When this condition occurs, and is severe enough (high concentrations of solutes in soil water), it causes fertilizer burn (plasmolysis), where plasma is torn from cell walls as the water inside the cell exits to maintain solute equilibrium with the water surrounding the cell.

Our job, because you will not find a sufficient supply of nutrients in a container soil, is to provide a solution of dissolved nutrients that affords the plant a supply in the adequate to luxury range, yet still makes it easy for the plant to take up enough water to be well-hydrated and free of drought stress. Electrical conductivity (EC) of the water in the soil is a reliable way to judge the level of solutes and the plant�s ability to take up water. There are meters that measure this conductivity, and for most plants the ideal range of conductivity is from 1.5 - 3.5 mS, with some, like tomatoes, being as high as 4.5 mS. This is more technical than I wanted to be, but I added it in case someone wanted to search "mS" or "EC". Most of us, including me, will have to be satisfied with simply guessing, but understanding how plants take up water and fertilizer and the effect of solute concentrations in soil water is an important piece of the fertilizing puzzle.

Now, some disconcerting news - you have listened to all this talk about nutrient concentrations, but what do we supply, when, and how do we supply them? We have to decide what nutrients are appropriate to add to our supplementation program, but how? Most of us are just hobby growers and cannot do tissue analysis to determine what is lacking. We can be observant and learn the symptoms of various nutrient deficiencies though - and we CAN make some surprising generalizations.

What if I said that the nutritional needs of all plants is basically the same and that one fertilizer could suit almost all the plants we grow in containers - that by increasing/decreasing the dosage as we water, we could even manipulate plants to bloom and fruit more abundantly? It�s really quite logical, so please let me explain.

Tissue analysis of plants will nearly always show NPK to be in the ratio of approximately 10:1.5:7. If we assign N the constant of 100, P and K will range from 13-19 and 45-70 respectively. I�ll try to remember to make a chart showing the relative ratios of all the other 13 essential nutrients that don�t come from the air at the end of what I write.

All we need to do is supply nutrients in approximately the same ratio as plants use them, and in adequate amounts to keep them in the adequate to luxury range at all times. Remember that we can maximize water uptake by keeping the concentrations of solutes low, so a continual supply of a weak solution is best. Nutrients don�t just suddenly appear in large quantities in nature, so the low and continual dose method most closely mimics the nutritional supply Mother Nature offers. If you decide to adopt a "fertilize every time you water" approach, most liquid fertilizers can be applied at � to 1 tsp per gallon for best results. If you decide that�s too much work, try halving the dose recommended & cutting the interval in half. You can work out the math for granular soluble fertilizers and apply at a similar rate.

The system is rather self regulating if fertilizer is applied in low concentrations each time you water, even with houseplants in winter. As the plant�s growth slows, so does its need for both water and nutrients. Larger plants and plants that are growing robustly will need more water and nutrients, so linking nutrient supply to the water supply is a win/win situation all around.

Another advantage to supplying a continual low concentration of fertilizer is it eliminates the tendency of plants to show symptoms of nutrient deficiencies after they have received high doses of fertilizer and then been allowed to return to a more favorable level of soil solute concentrations. Even at perfectly acceptable concentrations of nutrients in the soil, plants previously exposed to high concentrations of fertilizer readily display these symptoms.

You will still need to guard against watering in sips and that habits accompanying tendency to allow solute (salt) accumulation in soils. Remember that as salts accumulate, both water and nutrient uptake is made more difficult and finally impaired or made impossible in severe cases. Your soils should always allow you to water so that at least 10-15% of the total volume of water applied passes through the soil and out the drain hole to be discarded. This flushes the soil and carries accumulating solutes out the drain hole.

I have recently switched to a liquid fertilizer with micronutrients in a 12:4:8 NPK ratio. Note how close this fit�s the average ratio of NPK content in plant tissues, noted above (10:1.5:7). If the P looks a little high at 4, consider that in container soils, P begins to be more tightly held as pH goes from 6.5 to below 6.0, which is on the high side of most container soil�s pH, so the manufacturer probably gave this some careful consideration.

To answer the inevitable questions about specialty fertilizers and "special" plant nutritional requirements, let me repeat that plants need nutrients in roughly the same ratio. Ratio is an entirely a separate consideration from dosage. You�ll need to adjust the dosage to fit the plant and perhaps strike a happy medium in containers that have a diversity of material.

If nutrient availability is unbalanced, if plants are getting more than they need of certain nutrients, but less than they need of others, the nutrient they need the most will be the one that limits growth. Whatever nutrients are available in excess, will be absorbed by the plant to a certain degree, and in some cases, this may lead to toxicity or even symptoms of shortages of other nutrients as toxicity levels block a plant's ability to take up other nutrients. Too much nitrogen will lead to excessive foliage production and less flowering. Too much potassium or phosphorus will not lead to ill effect, but will show up as a deficiency of other nutrients as it blocks uptake.

What about the "Bloom Booster" fertilizers you might ask? To induce more prolific flowering, a reduced N supply will have more and better effect than the high P bloom formulas. When N is reduced, it slows vegetative growth without reducing photosynthesis. Since vegetative growth is limited by a lack of N, and the photosynthetic machinery continues to turn out food, it leaves an expendable surplus for the plant to spend on flowers and fruit.

The fact that different species of plants grow in different types of soil where they are naturally found, does not mean that one needs more of a certain nutrient than the other. It just means that the plants have developed strategies to adapt to certain conditions, like excesses and deficiencies of particular nutrients..

Plants that "love" acid soils, e.g., have simply developed strategies to cope with those soils. Their calcium needs are still the same as any other plant and no different from the nutrient requirements of plants that thrive in alkaline soils. The problem for acid-loving plants is that they are unable to adequately limit their calcium uptake, and will absorb too much of it when available, resulting in cellular pH-values that are too high. Some acid-loving plants also have difficulties absorbing Fe, Mn, Cu, or Zn, which is more tightly held in alkaline soils, another reason why they thrive in low pH (acid) soils.

The point I�m trying to make in the last three or four paragraphs is simply that nearly all the variables in a fertilizer regimen pertain to the plants ability to handle nutrients, not to the actual nutrient needs of the plant.

So, If you select a fertilizer that is close in ratio to the concentration of major elements in plant tissues, you�re going to be in pretty good shape. Whether the fertilizer is furnished in chemical or organic form matters not a whit to the plant. Ions are ions, but there is one consideration. Chemical fertilizers are available for immediate uptake while organic fertilizers must be acted on by passing through the gut of micro-organisms to break them down into usable elemental form. Since microorganism populations are affected by cultural conditions like moisture/air levels in the soil, soil pH, fertility levels, temperature, etc., they tend to follow a boom/bust cycle in container culture, which has an impact on the reliability and timing of delivery of nutrients supplied in organic form.

What am I using? I start with a quart of 12-4-8 liquid Miracle-Gro all purpose plant food. To that, I add 3 Tbsp. of Epsom salts, 2 Tbsp. STEM (Soluble Trace Element Mix), and 1 Tbsp Sprint 138 Fe chelate and agitate until the concentrate is dissolved. I then try to fertilize my plants weakly (pun intended) with a half recommended dose of the concentrate and a little added 5-1-1 fish emulsion. The fish emulsion is for no particular reason except that I have lots of it on hand. This year my display containers performed better than they ever have in years past & they were still all looking amazingly attractive this third week of Oct when I finally decided to dismantle them because of imminent cold weather. I attribute results primarily to a good soil and a healthy nutrient supplementation program.

What would I recommend to someone who asked, for nearly all container plantings? If you can find it, a 12-4-8 liquid blend that contains all the minor elements would a great find and easy to use, but I don�t think it�s available. What I�m using does not have all the minors but I supply them with the STEM. You�ll likely find a 24-8-16 product readily available in granular, soluble form with all the minors, which is the same ratio as 12-4-8, so if I had to pick one fertilizer for use on all my plants, it would be that.

The chart I promised:

I gave Nitrogen, because it's the largest nutrient component, the value of 100. Other nutrients are listed as a weight percentage of N.
N 100
P 13-19
K 45-80
S 6-9
Mg 5-15
Ca 5-15
Fe 0.7
Mn 0.4
B(oron) 0.2
Zn 0.06
Cu 0.03
Cl 0.03
M(olybden) 0.003

If you're still awake - thanks for reading. It makes me feel like the effort was worth it. ;o) Let me know what you think - please.

Al

Here is a link that might be useful: Link to Water Movement and Retention in Container Soils

NOTES:

<none>
clipped on: 05.12.2013 at 03:39 pm    last updated on: 05.12.2013 at 03:40 pm

Easy Propagation Chamber

posted by: little_dani on 10.05.2005 at 08:34 pm in Plant Propagation Forum

I make a little propagation chamber that is so easy, and so reliable for me that I thought I would share the idea. I have not seen one like it here, and I did look through the FAQ, but didn't find one there either. I hope I did not miss it, and I hope I do not offend anyone by being presumptive in posting this here.

That said....

This is what you will need.
A plastic shoebox, with a lid. They come in various sizes, any will do.


Soil less potting mix, half peat, half perlite, or whatever is your favorite medium.
A little clay pot, with the drain hole plugged with caulking or silicone. If this is a new pot, scrub it with some steel wool to be sure it doesn't have a sealer on it. You want the water to seep through it.
Rooting hormone powder or liquid, or salix solution from the willow tree.
Plant material, snippers. I am going to pot some Plectranthus (a tall swedish ivy) and a Joseph's Coat, 'Red Thread'. I already have some succulents rooted in this box. I will take them out and pot them up later, DH has a new cacti pot he wants to put them in.
You can see here, I hope, that I fill the clay pot to the top with rain water, well water, or distilled water. I just don't use our tap water, too much chlorine and a ph that is out of sight.

I pour a little of the hormone powder out on a paper plate or a piece of paper, so that I don't contaminate the whole package of powder. And these little 'snippers' are the best for taking this kind of cuttings.


This is about right on the amount of hormone to use. I try to get 2 nodes per cutting, if I can. Knock off the excess. It is better to have a little too little than to have too much.
Then, with your finger, or a pencil, or stick, SOMETHING, poke a hole in the potting mix and insert your cutting. Pull the potting mix up around the cutting good and snug.

When your box is full, and I always like to pretty much fill the box, just put the lid on it, and set it in the shade. You don't ever put this box in the sun. You wind up with boiled cuttings. YUK!

Check the cuttings every few days, and refill the reservoire as needed. Don't let it dry out. If you happen to get too wet, just prop the lid open with a pencil for a little while.
This is a very good method of propagation, but I don't do roses in these. The thorns just make it hard for me, with my big fingers, to pack the box full. All kinds of other things can be done in these. Just try it!

Janie

NOTES:

<none>
clipped on: 05.12.2013 at 03:22 pm    last updated on: 05.12.2013 at 03:22 pm

RE: how to grow trillium from seed (Follow-Up #3)

posted by: razorback33 on 10.12.2007 at 03:46 am in Woodlands Forum

kwoods....
The coating found on Trillium (and other Genera) seed is an elaiosome (Oil+body) and is rich in fatty-acids & protein. It is designed to attract ants for seed dispersal(myrmecochory). Ants carry the coated seed to their nests and feed the elaiosome to their larvae. The remaining seed is carried to their waste disposal area, where decaying matter aids in germination.
Elaiosome loses it's attraction to ants as soon as it begins to decay, a matter of a few hours in high temperatures, and they often abandon the seed before they reach the nest.
It does not contain inhibitors or enhancements, but some limited tests indicate that removing the elaiosome on freshly collected seed or waiting 48+ hours after collecting the seed before planting, could produce a higher germination rate?
In my seed sowing experience, it usually takes that long for me to get around to planting them! :<)
Rb

NOTES:

<none>
clipped on: 05.12.2013 at 03:14 pm    last updated on: 05.12.2013 at 03:14 pm

RE: how to grow trillium from seed (Follow-Up #2)

posted by: kwoods on 10.11.2007 at 01:46 pm in Woodlands Forum

Rb,

Doesn't trillium seed covering have a germination inhibitor of some kind? If I remember correctly ants disperse the seed by carrying them off and eating the covering. Could be wrong 'bout this. W/ my plants I squeeze the fresh seeds out of the seedcoat and right into the ground. Hard to tell the germination rate but I have tons of little guys coming up from doing this.

NOTES:

<none>
clipped on: 05.12.2013 at 03:12 pm    last updated on: 05.12.2013 at 03:13 pm

RE: how to grow trillium from seed (Follow-Up #1)

posted by: razorback33 on 10.07.2007 at 04:56 am in Woodlands Forum

Fresh seed produce most reliable germination. Old and dried seed may produce some seedlings, but the germination percentage will probably be low or none and takes longer. Trillium seed require a double dormancy, a warm-cold-warm period and a second warm-cold-warm period. If seed are planted and left outdoors, they usually begin germination during the second year.
Select a pot or tray large enough to accomodate the quantity of seed you have, without crowding them. If the pot is a reused one, sterilize it by washing in a solution of one part household chlorine bleach and nine parts water.
Use a soilless mix, or better, a seed starting mix, which is a finer texture. Moisten the mixture before planting the seed. Be sure the pot or tray has good drainage.
Place the seed on the moistened mix, keeping them separated as much as possible. I use tweezers or plastic gloves to avoid contact with the seed, which may contaminate them.
Cover the seed with about �" of moistened potting mix and then �" or less of washed coarse sand. This prevents moss and algae from growing on the surface. Cover the pot with a fine metal screen mesh to prevent rodent damage.
You may plunge the pot in sand or soil, up to just below the rim and cover with leaves or conifer needles during the winter, to conserve moisture. Remove the mulch in the spring.
Check frequently during dry periods for soil moisture and do not allow the soil to become dry.
When seed begin to germinate, you will see a single leaf-like form (cotyledon) emerge. It usually remains for the first year and true leaves will emerge the following year.
Depending upon the species, it will usually require 3-5 years before flowering occurs. Some say much longer.
To prevent damping-off, drench the soil with garlic water after planting.
(one or two cloves of minced garlic in a pint of water, let steep for a few hours).
If you use sterilized soil and pot and good sanitation practice, that is usually unnecessary.
After true leaves appear, if you wish to fertilize them, use a slow release general purpose fertilizer, such as 14-14-14, in the spring.
I usually wait until they attain a height of several inches before removing them from the pots and transplanting in the garden.
Hope other members with experience growing Trillium from seed will chime in with their process. Always helps to have different perspectives.
Rb

NOTES:

<none>
clipped on: 05.12.2013 at 03:08 pm    last updated on: 05.12.2013 at 03:09 pm