Clippings by DandyLioness

 Sort by: Last Updated Post Date Post Title Forum Name 

RE: how to post pictures (Follow-Up #1)

posted by: homemaker on 06.14.2005 at 08:46 pm in Clematis Forum

Hi and welcome. I've posted this before on other forums, but I hope no one minds that I post this again. I would have linked to the old post, but it has scrolled off.
Depending on your level of skill and confidence, you may not need instructions as detailed as these.
First you need a Photobucket account.
Go to Photobucket and open that account.
Find a picture on your hard drive that you want to add to Photobucket. Look at it on your screen.
Click on File, Save as, and take note of what directory it is being saved in. Write it down if necessary.
Go to PhotoBucket
Go to your album.
It will look like this.
Place your cursor in the box UNDER the Add pictures from URL (see the circled item)

Click on BROWSE
You will get a window something like this:

Browse to the folder containing your pictures by double clicking your way to it. It helps if you know ahead of time where they are.
Double click on the photo you want to add.
You will see part of the photo name in the box (see the circled item)

Click on SUBMIT and wait.
When the picture has been added, there will be a message. (see the circled item)

Under the photo you have just added will be up to three lines - URL, TAG and IMG (see the circled item)

You will need the TAG to embed photos into your message. If you click on that box, it will be highlighted. Copy that (CTL-C) and go to your message thread. Paste it in the message where you want it. (CTL-V).
If you don�t see the TAG option, click on ACCOUNT OPTIONS
Make sure there is a dot in the YES circle in front of TAG (see the circled item)

If you want to add multiple pictures, click on the little down arrow beside Submit Multiple Pictures (see the circled item)

There will be a drop down menu allowing you to choose up to 19 pictures.
Browse for each picture as above.
Don�t know if I covered everything, but if you have any more questions, please ask.

NOTES:

Posting Pics
clipped on: 01.28.2014 at 02:05 pm    last updated on: 01.28.2014 at 02:06 pm

Beginning of Autumn

posted by: deanneart on 09.26.2006 at 08:30 pm in Perennials Forum

It is difficult to believe that October is just around the corner and the first frosts are just as imminent. Where did this year go? It seems that only in the last week or so I was finishing potting up the containers and now it is time to take them apart. Seems so sad but if the truth be told I�m about ready for a rest from tending everything outside. I took a walk around with my camera yesterday and enjoyed some of the views I still have. The annuals are now the shining stars in the gardens and are definitely worth all the work to have so much color at the end of September.

The terrace gardens are just about finished up except for the sedums but the variegated foliage of the �Nora Leigh� phlox still sparkles in that border. The fuchsias are as happy as can be with the sunny days and cool nights and putting on quite a show to finish up the season.

The dogwood is just beautiful this time of the year and has more berries on it than I�ve ever seen before. The birds have stripped the Mountain Ash and have started working on the dogwood in the last few days.

The containers are just full of color and it seems a crime to dismantle them before the cold but I�d better start taking them apart soon. I think I�m in �frost denial� mode at the moment.

Thanks again Eileen for this wonderful Illustris! I�ve enjoyed it tremendously this summer. I�m hoping I can successfully winter it over.

This container has been just terrific this whole season and there are no flowers in it! I love that it looks so great and doesn�t need the constant deadheading of the arrangements with flowers. That Plectranthus �Lemon Twist� is an amazing and wonderful plant. It always looks great, takes to pruning well and grows like its on steroids. I love it! The other plants in this are one of those Cordyline australis, a Strobilanthes, Coleus �Gays Delight� and a Ipomoea �Sweet Caroline Purple�

Another absolute favorite form this year with an Abutilon pictum �Thompsonii�, Abutilon �Bella hybrid�, Plectranthus �Lemon Twist�, Coleus �Dappled Apple� and a lantana that didn�t have a name. I want to do this arrangement again next year but replace the orange flowered abutilon pictum with the one that has yellow blossoms. I thought I�d call it the �Lemon Meringue� container. LOL

This has been so nice also with the Sedona and Tilt-a-Whirl coleus with the scavola and fuchsia. The green spotted leaves are Calla lily �Flame� that unfortunately never bloomed. They were pretty small corms that came from HD so I�m hoping if I save them and replant next year I�ll get some flowers. Cant you just see this arrangement with those orange calla flowers? That would have been great.

This container on the patio has gotten gigantic. I think the abutilon in this one is about five feet tall now.

Here is the other side�

The containers on the front steps are still looking nice as well. I just can�t tell you all how much I�m loving those fuchsias. The only problem with this picture is that canna lily was supposed to have more of a pink flower instead of that coral one and it just clashes with that dahlia in that upper container. Won�t make that combo again. LOL

The breezeway entrance with my �helper� posing for a pic. You can see one of my Hydrangea �Little Honey�s and one of the purple pots I bought in Rochester when visiting Mary.

The asters have opened in the driveway garden are look terrific this year.

OK I guess I�d better quit before this thread doesn�t open. Enjoy!
Deanne

NOTES:

Garden color inspiration
clipped on: 06.12.2013 at 01:56 am    last updated on: 06.12.2013 at 01:57 am

RE: Vinegar for black spots (Follow-Up #5)

posted by: The_Dark_Rose on 02.11.2002 at 11:09 am in Organic Rose Growing Forum

I have used this recipe after finding it at one of your rose forums last year and it has worked wonders!!!

3 tablespoons of Apple Cider Vinegar to 5 litres of water. I couldn't begin to tell you how impressed I was at the results! Double Delight, which used to get riddled with blackspot looked lush and healthy with no b/s to be seen!

Also as an experiment I sprayed on the vinegar spray and waited to see how long it would take for more blackspot to appear, and it took approximately 3-4 weeks for the more blackspot prone roses and even longer for the healthier ones,( the Austins ) if at all!

As for only spraying in the early morning or early evening, I found that that didn't matter either. I sprayed during the middle of the day ( in spring, mind you! ) without any burning.

Another method I have adopted now is to spray with the vinegar spray and then alternate with the milk spray - 1 part milk to 7 parts water. Works a treat! I'm so happy to find such a cheap and harmless solution, and by harmless I mean that you can get away with having your skin exposed, but I still wear sunglasses as the vinegar solution could burn your eyes if it blew into them I suppose! All the best and happy gardening!

Here's another method I adopt to occasionally. When your rose leaves are showing sign of deficiency, like yellow leaves etc, simply spray on a solution of either liquid seaweed and water or fish emulsion and water and the leaves bounce back within the week of spraying. I use a small hand sprayer that is about 450 mls. Add only half a teaspoon of the liquid seaweed or fish ..... that's all you need! And that's all from me ......... over and out!
:-D

NOTES:

Rose care
clipped on: 06.05.2013 at 01:07 am    last updated on: 06.05.2013 at 01:08 am

RE: Once and for all. How often to water? (Follow-Up #1)

posted by: grass1950 on 09.23.2012 at 10:20 am in Lawn Care Forum

Me: Water long enough at each watering so that the soil becomes moist down to just below the root zone. Water again when the soil no longer has sufficient water to supply the turf.

You: How the heck am I supposed to know when I've watered enough to moisten the soil to below the root zone?

Me: Hmmm. OK, many university turf progams have determined that 1" application of water is needed to moisten the soil to a depth below the root zone in ideal soil conditions.

You: But I don't have ideal soil, whatever that is.

Me: Well you are going to have to experiment and guess. Clay soil is going to need to be watered in multiple short bursts so the water has time to sink in and not run off. Sandy soil will need less water to to moisten the the root zone than other soils as water penetrates sand easier. Let's see, You could use a screwdriver before watering and after watering compare results to see if it will penetrate down five or six inces after watering. or you could dig a hole and see if the water has penetrated down below the root zone or...

You: How will I know when there isn't sufficient water and I need to water again?

Me: Hmmm. With Ideal soil and average temperatures, once a week oughta do it.

You: I already told you I don't have ideal soil and the temperatures range from the low 60s to the high 90s. How can once a week always be right?

Me: Dig a hole and see if the soil is moist every day.

You: Are you nuts?

Me: Alright. Look. This is what I do: I learned to recognize the first signs of turf stress due to lack of water. (curling blades and the blades don't come back up after walking on it, etc.) At the beginning of summer when rain is scarce and temps are high, I start with watering at least 1" so I know the water is getting down to below the root zone. Then I pay attention to my lawn and when it show stress signs, I water again. I keep track of how long this period of time usually is. In my case, about 4-5 days. Then I cut the water down from 1" to 1/2". If the turf doesn't shw stress for 4-5 days, I cut the water down to 1/4". If the grass show stress the next day I know I went too far and move back up to 1/2". To water properly you must be observant, learn the signs of stress and be willing to spend time expermenting. Otherwise water 1" at a time and water once a week, or when the grass shows stress.

NOTES:

How to water lawn efficiently!
clipped on: 06.02.2013 at 03:30 pm    last updated on: 06.02.2013 at 03:30 pm

RE: What is wrong with this thing??? (Follow-Up #1)

posted by: luis_pr on 07.02.2012 at 09:17 pm in Hydrangea Forum

The picture is not quite clear but it is a newly planted shrub. When new shrubs are introduced to the outside environment, they will suffer a little on the first year. Because it is a relatively speaking new shrub, the stems cannot hold the weight of the blooms. I suggest you prune off the blooms and use some chicken wire as you would a belt around your stomach. Make the chicken wire prop up the stems. Use gladiolus stakes to help individual problem stems if you want. In future years, the stems will be stronger and will handle the weight of the blooms (although there are some varieties out there like Annabelle which just have this issue a lot).

Do not use overhead watering with hydrangeas because this makes the blooms weigh more than normal and makes the leaves likely to develop fungal infections like powdery mildew. In the case of shrubs that are watered daily, it is best to water (ONLY THE SOIL/MULCH) deeply and less often since lots of water daily can result in root rot... especially if the soil does not drain well and the soil stays wet for too long of a period.

Try applying about 1 gallon of water anytime that a finger inserted into the soil to a depth of 4" feels dry or almost dry. For two or three weeks, check daily the soil moisture early in the mornings in this way. And every time that you water, also write a note in a wall calendar indicating that you watered on that day. After 2-3 weeks, review the information that you wrote in the calendar and determine how often, on average, you had to water: every three days, every four days, etc. Then set your sprinkler system or drip irrigation to deliver 1 gallon of water on that same frequency (every three days/etc). If the temperatures change by 10-15 degrees and stay there, use the finger method daily again to see if you need to tweak things. As the summer progresses, the plant will need more water but as Fall arrives, you should water less. If the plant has gone dormant and dropped all leaves, consider watering about once a week or once every two weeks if the Fall/winter are dry; stop watering once the ground freezes.

Maintain the mulch that you have to a depth of 3-4" in order to protect the roots from the worst of your winters. And to make the soil stay moist for longer periods of time.

If your shrub came with those round fertilizer pellets in the potting mix, do not fertilize until next year. The ideal time to fertilize in your area is once a year, around June, by adding 1/2 a cup or 1 cup of compost, composted manure, cottonseed meal or you can make one application of a general purpose slow-release chemical fertilizer like Osmocote (10-10-10).

If you notice that the leaves in direct contact with the sun are getting scorched while the other leaves remain unaffected, the plant is getting too much sun and needs to be transplanted to a location where it gets more shade in the afternoon. However, since you live so far up north, I doubt this will be a problem since the sun there is not as strong as it is here during the summer months.

Does that help you, jeffgr1973.

NOTES:

Hydrangea care
clipped on: 08.10.2012 at 12:10 am    last updated on: 08.10.2012 at 12:10 am

Tapla's 5-1-1 Container Mix in More Detail

posted by: goodhumusman on 02.26.2009 at 12:44 pm in Container Gardening Forum

I recently joined the forum and discovered Al's 5-1-1 Mix, but I had several questions that Al was kind enough to answer by email. I also found the answers to other questions in several different threads. I thought it would be useful to organize all of the info in one place so that we could have easy access to it. 98% of the following has been cut/pasted from Al's postings, and I apologize in advance if I have somehow misquoted him or taken his ideas out of proper context. The only significant addition from another source is the Cornell method of determining porosity, which I thought would be germane. I have used a question and answer format, using many questions from other members, and I apologize for not giving them proper credit. Thanks to all who contributed to this information. Now, here's Al:

Tapla's 5-1-1 Mix

5 parts pine bark fines
1 part sphagnum peat
1-2 parts perlite
garden lime
controlled release fertilizer (not really necessary)
a micro-nutrient source (seaweed emulsion, Earthjuice, Micro-max, STEM, etc,)

Many friends & forum folk grow in this 5-1-1 mix with very good results. I use it for all my garden display containers. It is intended for annual and vegetable crops in containers. This soil is formulated with a focus on plentiful aeration, which we know has an inverse relationship w/water retention. It takes advantage of particles, the size of which are at or just under the size that would guarantee the soil retains no perched water. (If you have not already read Al's treatise on Water in Container Soils, this would be a good time to do so.) In simple terms: Plants that expire because of drainage problems either die of thirst because the roots have rotted and can no longer take up water, or they starve/"suffocate" because there is insufficient air at the root zone to ensure normal water/nutrient uptake and root function.

I grow in highly-aerated soils with the bulk of the particles in the 1/16"-1/8" size, heavily favoring the larger particles, because we know that perched water levels decrease as particle size increases, until finally, as particle size reaches just under 1/8" the perched water table disappears entirely.

Ideal container soils will have a minimum of 60-75% total porosity. This means that when dry, in round numbers, nearly 70% of the total volume of soil is air. The term 'container capacity' is a hort term that describes the saturation level of soils after the soil is saturated and at the point where it has just stopped draining - a fully wetted soil. When soils are at container capacity, they should still have in excess of 30% air porosity. Roughly, a great soil will have about equal parts of solid particles, water, and air when the soil is fully saturated.

This is Cornell's method of determining the various types of porosity:

To ensure sufficient media porosity, it is essential to determine total porosity, aeration porosity, and water-holding porosity. Porosity can be determined through the following procedure:

* With drainage holes sealed in an empty container, fill the container and record the volume of water required to reach the top of the container. This is the container volume.

* Empty and dry the plugged container and fill it with the growing media to the top of the container.

* Irrigate the container medium slowly until it is saturated with water. Several hours may be required to reach the saturation point, which can be recognized by glistening of the medium's surface.

* Record the total volume of water necessary to reach the saturation point as the total pore volume.

* Unplug the drainage holes and allow the water to freely drain from the container media into a pan for several hours.

* Measure the volume of water in the pan after all free water has completed draining. Record this as the aeration pore volume.

* Calculate total porosity, aeration porosity, and water-holding porosity using the following equations (Landis, 1990):

* Total porosity = total pore volume / container volume
* Aeration porosity = aeration pore volume / container volume
* Water-holding porosity = total porosity - aeration porosity

The keys to why I like my 3-1-1 mix:

It's adjustable for water retention.
The ingredients are readily available to me.
It's simple - 3 basic ingredients - equal portions.
It allows nearly 100% control over the nutritional regimen.
It will not collapse - lasts longer than what is prudent between repots.
It is almost totally forgiving of over-watering while retaining good amounts of water between drinks.
It is relatively inexpensive.

Q. Why do you use pine bark fines? Bark fines of fir, hemlock or pine, are excellent as the primary component of your soils. The lignin contained in bark keeps it rigid and the rigidity provides air-holding pockets in the root zone far longer than peat or compost mixes that too quickly break down to a soup-like consistency. Conifer bark also contains suberin, a lipid sometimes referred to as natures preservative. Suberin, more scarce as a presence in sapwood products and hardwood bark, dramatically slows the decomposition of conifer bark-based soils. It contains highly varied hydrocarbon chains and the microorganisms that turn peat to soup have great difficulty cleaving these chains.

Q. What is the correct size of the fines? In simple terms: Plants that expire because of drainage problems either die of thirst because the roots have rotted and can no longer take up water, or they starve/"suffocate" because there is insufficient air at the root zone to insure normal water/nutrient uptake and root function.Pine bark fines are partially composted pine bark. Fines are what are used in mixes because of the small particle size. There will be a naturally occurring "perched water table" (PWT) in containers when soil particulate size is under about .125 (1/8) inch, so best would be particulates in the 1/16 - 3/16 size range with the 1/16-1/8 size range favored.

Note that there is no sand or compost in the soils I use. Sand, as most of you think of it, can improve drainage in some cases, but it reduces aeration by filling valuable macro-pores in soils. Unless sand particle size is fairly uniform and/or larger than about BB size I leave it out of soils. Compost is too unstable for me to consider using in soils. The small amount of micro-nutrients it supplies can easily be delivered by one or more of a number of chemical or organic sources.

Q. Do you use partially composted pine bark fines? Yes - preferred over fresh fines, which are lighter in color.

Q. I found some Scotchman's Choice Organic Compost, which is made of pine bark fines averaging about 1/8" in size, and, after adding all ingredients, the 5-1-1 Mix had a total porosity of 67% and an aeration porosity of 37%. Is that all right? Yes, that is fine.

Q. What kind of lime do you use? Dolomitic.

Q. What amount of lime should I add if I used 10 gal of pine bark fines and the corresponding amount of the other ingredients? @ 5:1:1, you'll end up with about 12 gallons of soil (the whole is not equal to the sum of the parts when you're talking about soils), so I would use about 10-12 Tbsp or 2/3-3/4 cup of lime.

Q. What grade of coarseness for the lime? Most is sold as garden lime, which is usually prilled powder. Prilling makes it easier to use in drop & broadcast spreaders. The prills dissolve quickly. The finer the powder the quicker the reactive phase is finished. Much of the Ca and Mg will be unavailable until the media pH equalizes so the plant can assimilate the residual elements. Large pieces of lime really extend the duration of the reactive phase.

Q. Does this mean that I need to make up the soil in advance? Yes. 2 weeks or so should be enough time to allow for the reaction phase to be complete & residual Ca/Mg to become more readily available from the outset .

Q. During those 2 weeks, do I need to keep turning it and moistening it? No

Q. Can I go ahead and fill my 3-gal. containers, stack them 3-high, and cover the top one to prevent moisture loss during the waiting period? Something like that would be preferred.

Q. The perlite I use has a large amount of powder even though it is called coarse. Do I need to sift it to get rid of the powder? Not unless it REALLY has a lot - then, the reason wouldn't be because of issues with particle size - it would be because you had to use larger volumes to achieve adequate drainage & larger volumes bring with it the possibility of Fl toxicity for some plants that are fluoride intolerant.

Q. What about earthworm castings (EWC)? I think 10% is a good rule of thumb for the total volume of fine particles. I try to limit peat use to about 10-15% of soil volume & just stay away from those things that rob aeration & promote water retention beyond a minimal perched water table. If you start adding 10% play sand, 10% worm castings, 10% compost, 10% peat, 10% topsoil, 10% vermiculite to a soil, before long you'll be growing in something close to a pudding-like consistency.

Q. Do you drench the mix with fertilized water before putting in containers? No - especially if you incorporate a CRF. It will have lots of fertilizer on it's surface & the soil could already be high in solubles. If you added CRF, wait until you've watered and flushed the soil a couple of times. If you didn't use CRF, you can fertilize with a weak solution the first time you water after the initial planting irrigation.

Q. How much of the micronutrients should I add if I am going to be fertilizing with Foliage Pro 9-3-6, which has all the micronutrients in it? You won't need any additional supplementation as long as you lime.
Q. Just to make sure I understand, are you saying I don't need to use Foliage Pro 9-3-6 until after the initial watering right after planting even if I don't use a CRF? And no additional micronutrients? That's right - on both counts.

Q. Do I need to moisten the peat moss before mixing with the pine bark fines? It helps, yes.

Selections from Notes on Choosing a Fertilizer

A) Plant nutrients are dissolved in water
B) The lower the nutrient concentration, the easier it is for the plant to absorb water and the nutrients dissolved in the water - distilled water is easier for plants to absorb than tap water because there is nothing dissolved in distilled water
C) The higher the nutrient content, the more difficult it is for plants to absorb water and the nutrients dissolved in water
D) To maximize plant vitality, we should supply adequate amounts of all the essential nutrients w/o using concentrations so high that they impede water and nutrient uptake.

All that is in the "Fertilizer Thread" I posted a while back.

Q. Do you use the Dyna-Gro Foliage Pro 9-3-6 exclusively throughout the life of the plant, or change to something else for the flowering/fruiting stage? I use lots of different fertilizers, but if I had to choose only one, it would likely be the FP 9-3-6. It really simplifies things. There are very few plants that won't respond very favorably to this fertilizer. I use fast soils that drain freely & I fertilize at EVERY watering, and it works extremely well.

If you are using a soil that allows you to water freely at every watering, you cannot go wrong by watering weakly weekly, and you can water at 1/8 the recommended dose at every watering if you wish with chemical fertilizers.

Q. What about the "Bloom Booster" fertilizers? To induce more prolific flowering, a reduced N supply will have more and better effect than the high P bloom formulas. When N is reduced, it slows vegetative growth without reducing photosynthesis. Since vegetative growth is limited by a lack of N, and the photosynthetic machinery continues to turn out food, it leaves an expendable surplus for the plant to spend on flowers and fruit. There are no plants I know of that use anywhere near the amount of P as they do N (1/6 is the norm). It makes no sense to me to have more P available than N unless you are targeting a VERY specific growth pattern; and then the P would still be applied in a reasonable ratio to K.

Somewhere along the way, we curiously began to look at fertilizers as miraculous assemblages of growth drugs, and started interpreting the restorative effect (to normal growth) fertilizers have as stimulation beyond what a normal growth rate would be if all nutrients were adequately present in soils. Its no small wonder that we come away with the idea that there are miracle concoctions out there and often end up placing more hope than is reasonable in them.

What I'm pointing out is that fertilizers really should not be looked at as something that will make your plant grow abnormally well - beyond its genetic potential . . . Fertilizers do not/can not stimulate super growth, nor are they designed to. All they can do is correct nutritional deficiencies so plants can grow normally.

Q. Should I use organic ferts or chemical ferts in containers? Organic fertilizers do work to varying degrees in containers, but I would have to say that delivery of the nutrients can be very erratic and unreliable. The reason is that nutrient delivery depends on the organic molecules being broken down in the gut of micro-organisms, and micro-organism populations are boom/bust, varying widely in container culture.

Some of the things affecting the populations are container soil pH, moisture levels, nutrient levels, soil composition, compaction/aeration levels ..... Of particular importance is soil temperatures. When container temperatures rise too high, microbial populations diminish. Temps much under 55* will slow soil biotic activity substantially, reducing or halting delivery of nutrients.

I do include various formulations of fish emulsion in my nutrient program at certain times of the year, but I never rely on them, choosing chemical fertilizers instead. Chemical fertilizers are always immediately available for plant uptake & the results of your applications are much easier to quantify.

Q. Should I feed the plants every time I water? In a word, yes. I want to keep this simple, so Ill just say that the best water absorption occurs when the level of solutes in soil water is lowest, and in the presence of good amounts of oxygen. Our job, because you will not find a sufficient supply of nutrients in a container soil, is to provide a solution of dissolved nutrients that affords the plant a supply in the adequate to luxury range, yet still makes it easy for the plant to take up enough water to be well-hydrated and free of drought stress. All we need to do is supply nutrients in approximately the same ratio as plants use them, and in adequate amounts to keep them in the adequate to luxury range at all times. Remember that we can maximize water uptake by keeping the concentrations of solutes low, so a continual supply of a weak solution is best. Nutrients dont just suddenly appear in large quantities in nature, so the low and continual dose method most closely mimics the nutritional supply Mother Nature offers. If you decide to adopt a "fertilize every time you water" approach, most liquid fertilizers can be applied at to 1 tsp per gallon for best results.

The system is rather self regulating if fertilizer is applied in low concentrations each time you water, even with houseplants in winter. As the plants growth slows, so does its need for both water and nutrients. Larger plants and plants that are growing robustly will need more water and nutrients, so linking nutrient supply to the water supply is a win/win situation all around.

You can tell you've watered too much (or too little - the response is the same - a drought response) when leaves start to turn yellow or you begin to see nutritional deficiencies created by poor root metabolism (usually N and Ca are first evident). You can prevent overwatering by A) testing the soil deep in the container with a wood dowel ... wet & cool - do not water, dry - water. B) feeling the wick & only watering when it's dry C) feel the soil at the drain hole & only water when it feels dry there.

Soils feel dry to our touch when they still have 40-45% moisture content. Plants, however, can still extract water from soils until they dry down to about 25-30%, so there is still around a 15% cush in that plants can still absorb considerable moisture after soils first feel dry to us.

Q. When you water/fertilize, do you give it enough that 10% leaches out the bottom each time? Yes, I try to do that at every watering. Remember that as salts accumulate, both water and nutrient uptake is made more difficult and finally impaired or made impossible in severe cases. Your soils should always allow you to water so that at least 10-15% of the total volume of water applied passes through the soil and out the drain hole to be discarded. This flushes the soil and carries accumulating solutes out the drain hole. In addition, each thorough watering forces stale gases from the soil. CO2 accumulation in heavy soils is very detrimental to root health, but you usually can't apply water in volume enough to force these gases from the soil. Open soils allow free gas exchange at all times.

Q. Should I elevate my pots? The container will not drain the same % of water if it's sitting in a puddle, but the % won't be particularly significant. What will be significant is: if water (in a puddle) is able to make contact with the soil in the container through surface tension and/or capillarity, it will "feed" and prolong the saturated conditions of any PWT that might be in the container. However, if water can soak in or if it will flow away from the containers, there's no advantage to elevating when you're not using a wick.

Q. I like a pH of about 5.7. Is that about right? That's a good number, but you won't have any way of maintaining it in your soil w/o some sophisticated equipment. I never concern myself with media pH. That doesn't mean you should ignore water pH, though. It (water pH) affects the solubility of fertilizers; and generally speaking, the higher the water pH, the lower the degree of nutrient solubility.

Q. How do you repot? Some plants do not take to root-pruning well (palms, eg), but the vast majority of them REALLY appreciate the rejuvenational properties of major root work. I'm not at all delicate in my treatment of rootage when it comes time to repot (completely different from potting-up). Usually I chop or saw the bottom 1/2-2/3 of the root mass off, bare-root the plant, stick it back in the same pot with ALL fresh soil, use a chopstick to move soil into all the spaces/pockets between roots, water/fertilize well & put in the shade for a week to recover. I should mention that this procedure is most effective on plants with woody roots, which most quickly grow to be inefficient as they lignify, thicken, and fill the pot. Those plants with extremely fibrous root systems are easier to care for. For those, I usually saw off the bottom 1/2 - 2/3 of the roots, work a chopstick through the remaining mat of roots, removing a fair amount of soil, prune around the perimeter & repot in fresh, well-aerated soil.

I find that time after time, plants treated in this fashion sulk for a week or two and then put on a huge growth spurt (when repotted in spring or summer). Growth INVARIABLY surpasses what it would have been if the plant was allowed to languish in it's old, root-bound haunts. Potting up is a temporary way to rejuvenate a plant, but if you look ate a long-term graph of plants continually potted-up, you will see continual decline with little spurts of improved vitality at potting-up time. This stress/strain on plants that are potted-up only, eventually takes its toll & plants succumb. There is no reason most houseplants shouldn't live for years and years, yet we often content ourselves with the 'revolving door replacement' of our plants when just a little attention to detail would allow us to call the same plant our friend - often for the rest of our lives if we prefer.

Q. Is there any rule of thumb as to how often to root prune? I'm going to answer as if you included 'repotting' in your question. There is no hard, fast rule here. Some of you grow plants strictly for the blooms, and some plants produce more abundant blooms in containers when they are stressed in some manner. Often, that stress is in the form of keeping them root-bound. I'll talk about maintaining a plant's vitality & let you work out how you want to handle the degree of stress you wish to subject them to, in order to achieve your goals. Before I go on, I'd like to say that I use stress techniques too, to achieve a compact, full plant, and to slow growth of a particularly attractive plant - to KEEP it attractive. ;o) The stress of growing a plant tight can be useful to a degree, but at some point, there will be diminishing returns.

When you need to repot to correct declining vitality:

1) When the soil has collapsed/compacted, or was too water-retentive from the time you last potted-up or repotted. You can identify this condition by soil that remains wet for more than a few days, or by soil that won't take water well. If you water a plant and the soil just sits on top of the soil w/o soaking in, the soil has collapsed/compacted. There is one proviso though: you must be sure that the soil is wet before you assess this condition. Soils often become hydrophobic (water repellent) and difficult to rewet, especially when using liquid organic fertilizers like fish/seaweed emulsions. Make sure this effect is not what you're witnessing by saturating the soil thoroughly & then assessing how fast the water moves downward through the soil. The soils I grow in are extremely fast and water disappears into the mix as soon as it's applied. If it takes more than 30 seconds for a large volume of water to disappear from the surface of the soil, you are almost certainly compromising potential vitality.

I'll talk about the potential vitality for just a sec. Plants will grow best in a damp soil with NO perched water. That is NO saturated layer of water at the bottom of the pot. Roots begin to die a very short time after being subjected to anaerobic conditions. They regenerate again as soon as air returns to the soil. This cyclic death/regeneration of roots steals valuable energy from the plant that might well have been employed to increase o/a biomass, and/or produce flowers and fruit. This is the loss of potential vitality I refer to.

2) When the plant is growing under tight conditions and has stopped extending, it is under strain, which will eventually lead to its death. "Plants must grow to live. Any plant that is not growing is dying." Dr. Alex Shigo Unless there are nutritional issues, plants that have stopped extending and show no growth when they should be coming into a period of robust growth usually need repotting. You can usually confirm your suspicions/diagnosis by looking for rootage "crawling" over the soil surface and/or growing out of the drain hole, or by lifting the plant from its pot & examining the root mass for encircling roots - especially fat roots at the container's edge. You'll be much less apt to find these types of roots encircling inner container perimeter in well-aerated soils because the roots find the entire soil mass hospitable. Roots are opportunistic and will be found in great abundance at the outside edge of the soil mass in plantings with poor drainage & soggy soil conditions - they're there looking for air.

3) When the soil is so compacted & water retentive that you must water in sips and cannot fully flush the soil at each watering for fear of creating conditions that will cause root rot. This isn't to say you MUST flush the soil at every watering, but the soil should drain well enough to ALLOW you to water this way whenever you prefer. This type of soil offers you the most protection against over-watering and you would really have to work hard at over-fertilizing in this type of soil. It will allow you to fertilize with a weak solution at every watering - even in winter if you prefer.

Incidentally, I reject the frequent anecdotal evidence that keeping N in soils at adequacy levels throughout the winter "forces" growth or "forces weak growth". Plants take what they need and leave the rest. While there could easily be the toxicity issues associated with too much fertilizer in soils due to a combination of inappropriate watering practices, inappropriate fertilizing practices, and an inappropriate soil, it's neither N toxicity NOR the presence of adequate N in soils that causes weak growth, it's low light levels.

Q. Is there any rule of thumb as to how often to remove and replace the old soil? Yes - every time you repot.

As always, I hope that those who read what I say about soils will ultimately take with them the idea that the soil is the foundation of every container planting & has effects that reach far beyond the obvious, but there is a snatch of lyrics from an old 70's song that might be appropriate: "... just take what you need and leave the rest ..." ;o)

NOTES:

<none>
clipped on: 06.05.2012 at 01:45 pm    last updated on: 06.05.2012 at 01:45 pm

Container Soils - Water Movement & Retention XV

posted by: tapla on 02.06.2012 at 02:58 pm in Container Gardening Forum

I first posted this thread back in March of '05. Fourteen times it has reached the maximum number of posts GW allows to a single thread, which is much more attention than I ever imagined it would garner. I have reposted it in no small part because it has been great fun, and a wonderful catalyst in the forging of new friendships and in increasing my list of acquaintances with similar growing interests. The forum and email exchanges that stem so often from the subject are in themselves enough to make me hope the subject continues to pique interest, and the exchanges provide helpful information. Most of the motivation for posting this thread another time comes from the reinforcement of hundreds of participants over the years that strongly suggests the information provided in good-spirited collective exchange has made a significant difference in the quality of their growing experience. I'll provide links to some of the more recent of the previous dozen threads and nearly 2,500 posts at the end of what I have written - just in case you have interest in reviewing them. Thank you for taking the time to examine this topic - I hope that any/all who read it take at least something interesting and helpful from it. I know it's long. My hope is that you find it worth the read, and the time you invest results in a significantly improved growing experience.

Since there are many questions about soils appropriate for use in containers, I'll post basic mix recipes later, in case any would like to try the soil. It will follow the information.

Before we get started, I'd like to mention that I wrote a reply and posted it to a thread recently, and I think it is well worth considering. It not only sets a minimum standard for what constitutes a 'GOOD' soil, but also points to the fact that not all growers look at container soils from the same perspective, which is why growers so often disagree on what makes a 'good' soil. I hope you find it thought provoking:

Is Soil X a 'Good' Soil?

I think any discussion on this topic must largely center around the word "GOOD", and we can broaden the term 'good' so it also includes 'quality' or 'suitable', as in "Is soil X a quality or suitable soil?"

How do we determine if soil A or soil B is a good soil? and before we do that, we'd better decide if we are going to look at it from the plant's perspective or from the grower's perspective, because often there is a considerable amount of conflict to be found in the overlap - so much so that one can often be mutually exclusive of the other.

We can imagine that grower A might not be happy or satisfied unless knows he is squeezing every bit of potential from his plants, and grower Z might not be happy or content unless he can water his plants before leaving on a 2-week jaunt, and still have a weeks worth of not having to water when he returns. Everyone else is somewhere between A and Z; with B, D, F, H, J, L, N, P, R, T, V, X, and Y either unaware of how much difference soil choice can make, or they understand but don't care.

I said all that to illustrate the large measure of futility in trying to establish any sort of standard as to what makes a good soil from the individual grower's perspective; but let's change our focus from the pointless to the possible.

We're only interested in the comparative degrees of 'good' and 'better' here. It would be presumptive to label any soil "best". 'Best I've found' or 'best I've used' CAN sometimes be useful for comparative purposes, but that's a very subjective judgment. Let's tackle 'good', then move on to 'better', and finally see what we can do about qualifying these descriptors so they can apply to all growers.

I would like to think that everyone would prefer to use a soil that can be described as 'good' from the plant's perspective. How do we determine what a plant wants? Surprisingly, we can use %s established by truly scientific studies that are widely accepted in the greenhouse and nursery trades to determine if a soil is good or not good - from the plant's perspective, that is. Rather than use confusing numbers that mean nothing to the hobby grower, I can suggest that our standard for a good soil should be, at a minimum, that you can water that soil properly. That means, that at any time during the growth cycle, you can water your plantings to beyond the point of saturation (so excess water is draining from the pot) without the fear of root rot or compromised root function or metabolism due to (take your pick) too much water or too little air in the root zone.

I think it's very reasonable to withhold the comparative basic descriptor, 'GOOD', from soils that can't be watered properly without compromising root function, or worse, suffering one of the fungaluglies that cause root rot. I also think anyone wishing to make the case from the plant's perspective that a soil that can't be watered to beyond saturation w/o compromising root health can be called 'good', is fighting on the UP side logic hill.

So I contend that 'good' soils are soils we can water correctly; that is, we can flush the soil when we water without concern for compromising root health/function/metabolism. If you ask yourself, "Can I water correctly if I use this soil?" and the answer is 'NO' ... it's not a good soil ... for the reasons stated above.

Can you water correctly using most of the bagged soils readily available? 'NO', I don't think I need to point to a conclusion.

What about 'BETTER'? Can we determine what might make a better soil? Yes, we can. If we start with a soil that meets the minimum standard of 'good', and improve either the physical and/or chemical properties of that soil, or make it last longer, then we have 'better'. Even if we cannot agree on how low we wish to set the bar for what constitutes 'good', we should be able to agree that any soil that reduces excess water retention, increases aeration, ensures increased potential for optimal root health, and lasts longer than soils that only meet some one's individual and arbitrary standard of 'good', is a 'better' soil.

All the plants we grow, unless grown from seed, have the genetic potential to be beautiful specimens. It's easy to say, and easy to see the absolute truth in the idea that if you give a plant everything it wants it will flourish and grow; after all, plants are programmed to grow just that way. Our growing skills are defined by our ability to give plants what they want. The better we are at it, the better our plants will grow. But we all know it's not that easy. Lifetimes are spent in careful study, trying to determine just exactly what it is that plants want and need to make them grow best.

Since this is a soil discussion, let's see what the plant wants from its soil. The plant wants a soil in which we have endeavored to provide in available form, all the essential nutrients, in the ratio in at which the plant uses them, and at a concentration high enough to prevent deficiencies yet low enough to make it easy to take up water (and the nutrients dissolved in the water). First and foremost, though, the plant wants a container soil that is evenly damp, never wet or soggy. Giving a plant what it wants, to flourish and grow, doesn't include a soil that is half saturated for a week before aeration returns to the entire soil mass, even if you only water in small sips. Plants might do 'ok' in some soils, but to actually flourish, like they are genetically programmed to do, they would need to be unencumbered by wet, soggy soils.

We become better growers by improving our ability to reduce the effects of limiting factors, or by eliminating those limiting factors entirely; in other words, by clearing out those influences that stand in the way of the plant reaching its genetic potential. Even if we are able to make every other factor that influences plant growth/vitality absolutely perfect, it could not make up for a substandard soil. For a plant to grow to its genetic potential, every factor has to be perfect, including the soil. Of course, we'll never manage to get to that point, but the good news is that as we get closer and closer, our plants get better and better; and hopefully, we'll get more from our growing experience.

In my travels, I've discovered it almost always ends up being that one little factor that we willingly or unwittingly overlooked that limits us in our abilities, and our plants in their potential.

Food for thought:
A 2-bit plant in a $10 soil has a future full of potential, where a $10 plant in a 2-bit soil has only a future filled with limitations. ~ Al

Container Soils - Water Movement & Retention

As container gardeners, our first priority should be to ensure the soils we use are adequately aerated for the life of the planting, or in the case of perennial material (trees, shrubs, garden perennials), from repot to repot. Soil aeration/drainage is the most important consideration in any container planting. Soils are the foundation that all container plantings are built on, and aeration is the very cornerstone of that foundation. Since aeration and drainage are inversely linked to soil particle size, it makes good sense to try to find and use soils or primary components with particles larger than peat/compost/coir. Durability and stability of soil components so they contribute to the retention of soil structure for extended periods is also extremely important. Pine and some other types of conifer bark fit the bill nicely, but I'll talk more about various components later.

What I will write also hits pretty hard against the futility in using a drainage layer of coarse materials in attempt to improve drainage. It just doesn't work. All it does is reduce the total volume of soil available for root colonization. A wick can be employed to remove water from the saturated layer of soil at the container bottom, but a drainage layer is not effective. A wick can be made to work in reverse of the self-watering pots widely being discussed on this forum now.

Consider this if you will:

Container soils are all about structure, and particle size plays the primary role in determining whether a soil is suited or unsuited to the application. Soil fills only a few needs in container culture. Among them are: Anchorage - a place for roots to extend, securing the plant and preventing it from toppling. Nutrient Retention - it must retain a nutrient supply in available form sufficient to sustain plant systems. Gas Exchange - it must be amply porous to allow air to move through the root system and gasses that are the by-product of decomposition to escape. Water - it must retain water enough in liquid and/or vapor form to sustain plants between waterings. Air - it must contain a volume of air sufficient to ensure that root function/metabolism/growth is not impaired. This is extremely important and the primary reason that heavy, water-retentive soils are so limiting in their affect. Most plants can be grown without soil as long as we can provide air, nutrients, and water, (witness hydroponics). Here, I will concentrate primarily on the movement and retention of water in container soil(s).

There are two forces that cause water to move through soil - one is gravity, the other capillary action. Gravity needs little explanation, but for this writing I would like to note: Gravitational flow potential (GFP) is greater for water at the top of the container than it is for water at the bottom. I'll return to that later.

Capillarity is a function of the natural forces of adhesion and cohesion. Adhesion is water's tendency to stick to solid objects like soil particles and the sides of the pot. Cohesion is the tendency for water to stick to itself. Cohesion is why we often find water in droplet form - because cohesion is at times stronger than adhesion; in other words, water's bond to itself can be stronger than the bond to the object it might be in contact with; cohesion is what makes water form drops. Capillary action is in evidence when we dip a paper towel in water. The water will soak into the towel and rise several inches above the surface of the water. It will not drain back into the source, and it will stop rising when the GFP equals the capillary attraction of the fibers in the paper.

There will be a naturally occurring "perched water table" (PWT) in containers when soil particulate size is under about .100 (just under 1/8) inch. Perched water is water that occupies a layer of soil at the bottom of containers or above coarse drainage layers that tends to remain saturated & will not drain from the portion of the pot it occupies. It can evaporate or be used by the plant, but physical forces will not allow it to drain. It is there because the capillary pull of the soil at some point will surpass the GFP; therefore, the water does not drain, it is said to be 'perched'. The smaller the size of the particles in a soil, the greater the height of the PWT. Perched water can be tightly held in heavy (comprised of small particles) soils where it perches (think of a bird on a perch) just above the container bottom where it will not drain; or, it can perch in a layer of heavy soil on top of a coarse drainage layer, where it will not drain.

Imagine that we have five cylinders of varying heights, shapes, and diameters, each with drain holes. If we fill them all with the same soil mix, then saturate the soil, the PWT will be exactly the same height in each container. This saturated area of the container is where roots initially seldom penetrate & where root problems frequently begin due to a lack of aeration and the production of noxious gasses. Water and nutrient uptake are also compromised by lack of air in the root zone. Keeping in mind the fact that the PWT height is dependent on soil particle size and has nothing to do with height or shape of the container, we can draw the conclusion that: If using a soil that supports perched water, tall growing containers will always have a higher percentage of unsaturated soil than squat containers when using the same soil mix. The reason: The level of the PWT will be the same in each container, with the taller container providing more usable, air holding soil above the PWT. From this, we could make a good case that taller containers are easier to grow in.

A given volume of large soil particles has less overall surface area when compared to the same volume of small particles and therefore less overall adhesive attraction to water. So, in soils with large particles, GFP more readily overcomes capillary attraction. They simply drain better and hold more air. We all know this, but the reason, often unclear, is that the height of the PWT is lower in coarse soils than in fine soils. The key to good drainage is size and uniformity of soil particles. Mixing large particles with small is often very ineffective because the smaller particles fit between the large, increasing surface area which increases the capillary attraction and thus the water holding potential. An illustrative question: How much perlite do we need to add to pudding to make it drain well?

I already stated I hold as true that the grower's soil choice when establishing a planting for the long term is the most important decision he/she will make. There is no question that the roots are the heart of the plant, and plant vitality is inextricably linked in a hard lock-up with root vitality. In order to get the best from your plants, you absolutely must have happy roots.

If you start with a water-retentive medium, you cannot effectively amend it to improve aeration or drainage characteristics by adding larger particulates. Sand, perlite, Turface, calcined DE ...... none of them will work effectively. To visualize why sand and perlite can't change drainage/aeration, think of how well a pot full of BBs would drain (perlite); then think of how poorly a pot full of pudding would drain (bagged soil). Even mixing the pudding and perlite/BBs together 1:1 in a third pot yields a mix that retains the drainage characteristics and PWT height of the pudding. It's only after the perlite become the largest fraction of the mix (60-75%) that drainage & PWT height begins to improve. At that point, you're growing in perlite amended with a little potting soil.

You cannot add coarse material to fine material and improve drainage or the ht of the PWT. Use the same example as above & replace the pudding with play sand or peat moss or a peat-based potting soil - same results. The benefit in adding perlite to heavy soils doesn't come from the fact that they drain better. The fine peat or pudding particles simply 'fill in' around the perlite, so drainage & the ht of the PWT remains the same. All perlite does in heavy soils is occupy space that would otherwise be full of water. Perlite simply reduces the amount of water a soil is capable of holding because it is not internally porous. IOW - all it does is take up space. That can be a considerable benefit, but it makes more sense to approach the problem from an angle that also allows us to increase the aeration AND durability of the soil. That is where Pine bark comes in, and I will get to that soon.

If you want to profit from a soil that offers superior drainage and aeration, you need to start with an ingredient as the basis for your soils that already HAVE those properties, by ensuring that the soil is primarily comprised of particles much larger than those in peat/compost/coir/sand/topsoil, which is why the recipes I suggest as starting points all direct readers to START with the foremost fraction of the soil being large particles, to ensure excellent aeration. From there, if you choose, you can add an appropriate volume of finer particles to increase water retention. You do not have that option with a soil that is already extremely water-retentive right out of the bag.

I fully understand that many are happy with the results they get when using commercially prepared soils, and I'm not trying to get anyone to change anything. My intent is to make sure that those who are having trouble with issues related to soil, understand why the issues occur, that there are options, and what they are.

We have seen that adding a coarse drainage layer at the container bottom does not improve drainage. It does though, reduce the volume of soil required to fill a container, making the container lighter. When we employ a drainage layer in an attempt to improve drainage, what we are actually doing is moving the level of the PWT higher in the pot. This simply reduces the volume of soil available for roots to colonize. Containers with uniform soil particle size from top of container to bottom will yield better and more uniform drainage and have a lower PWT than containers using the same soil with added drainage layers.

The coarser the drainage layer, the more detrimental to drainage it is because water is more (for lack of a better scientific word) reluctant to make the downward transition because the capillary pull of the soil above the drainage layer is stronger than the GFP. The reason for this is there is far more surface area on soil particles for water to be attracted to in the soil above the drainage layer than there is in the drainage layer, so the water perches. I know this goes against what most have thought to be true, but the principle is scientifically sound, and experiments have shown it as so. Many nurserymen employ the pot-in-pot or the pot-in-trench method of growing to capitalize on the science.

If you discover you need to increase drainage, you can simply insert an absorbent wick into a drainage hole & allow it to extend from the saturated soil in the container to a few inches below the bottom of the pot, or allow it to contact soil below the container where the earth acts as a giant wick and will absorb all or most of the perched water in the container, in most cases. Eliminating the PWT has much the same effect as providing your plants much more soil to grow in, as well as allowing more, much needed air in the root zone.

In simple terms: Plants that expire because of drainage problems either die of thirst because the roots have rotted and can no longer take up water, or they suffer/die because there is insufficient air at the root zone to insure normal root function, so water/nutrient uptake and root metabolism become seriously impaired.

To confirm the existence of the PWT and how effective a wick is at removing it, try this experiment: Fill a soft drink cup nearly full of garden soil. Add enough water to fill to the top, being sure all soil is saturated. Punch a drain hole in the bottom of the cup and allow the water to drain. When drainage has stopped, insert a wick into the drain hole . Take note of how much additional water drains. Even touching the soil with a toothpick through the drain hole will cause substantial additional water to drain. The water that drains is water that occupied the PWT. A greatly simplified explanation of what occurs is: The wick or toothpick "fools" the water into thinking the pot is deeper than it is, so water begins to move downward seeking the "new" bottom of the pot, pulling the rest of the water in the PWT along with it. If there is interest, there are other simple and interesting experiments you can perform to confirm the existence of a PWT in container soils. I can expand later in the thread.

I always remain cognizant of these physical principles whenever I build a soil. I have not used a commercially prepared soil in many years, preferring to build a soil or amend one of my 2 basic mixes to suit individual plantings. I keep many ingredients at the ready for building soils, but the basic building process usually starts with conifer bark and perlite. Sphagnum peat plays a secondary role in my container soils because it breaks down too quickly to suit me, and when it does, it impedes drainage and reduces aeration. Size matters. Partially composted conifer bark fines (pine is easiest to find and least expensive) works best in the following recipes, followed by uncomposted bark in the <3/8" range.

Bark fines of pine, fir or hemlock, are excellent as the primary component of your soils. The lignin contained in bark keeps it rigid and the rigidity provides air-holding pockets in the root zone far longer than peat or compost mixes that too quickly break down to a soup-like consistency. Conifer bark also contains suberin, a lipid sometimes referred to as nature's preservative. Suberin, more scarce as a presence in sapwood products and hardwood bark, dramatically slows the decomposition of conifer bark-based soils. It contains highly varied hydrocarbon chains and the microorganisms that turn peat to soup have great difficulty cleaving these chains - it retains its structure.

Note that there is no sand or compost in the soils I use. Sand, as most of you think of it, can improve drainage in some cases, but it reduces aeration by filling valuable macro-pores in soils. Unless sand particle size is fairly uniform and/or larger than about BB size, I leave it out of soils. Compost is too fine and unstable for me to consider using in soils in any significant volume as well. The small amount of micro-nutrients it supplies can easily be delivered by one or more of a number of chemical or organic sources that do not detract from drainage/aeration.

The basic soils I use ....

The 5:1:1 mix:

5 parts pine bark fines (partially composted fines are best)
1 part sphagnum peat (not reed or sedge peat please)
1-2 parts perlite
garden lime (or gypsum in some cases)
controlled release fertilizer (if preferred)

Big batch:
2-3 cu ft pine bark fines
5 gallons peat
5 gallons perlite
2 cups dolomitic (garden) lime (or gypsum in some cases)
2 cups CRF (if preferred)

Small batch:
3 gallons pine bark
1/2 gallon peat
1/2 gallon perlite
4 tbsp lime (or gypsum in some cases)
1/4 cup CRF (if preferred)

I have seen advice that some highly organic (practically speaking - almost all container soils are highly organic) container soils are productive for up to 5 years or more. I disagree and will explain why if there is interest. Even if you were to substitute fir bark for pine bark in this recipe (and this recipe will long outlast any peat based soil) you should only expect a maximum of two to three years life before a repot is in order. Usually perennials, including trees (they're perennials too) should be repotted more frequently to insure they can grow at as close to their genetic potential within the limits of other cultural factors as possible. If a soil is desired that will retain structure for long periods, we need to look more to inorganic components. Some examples are crushed granite, fine stone, VERY coarse sand (see above - usually no smaller than BB size in containers, please), Haydite, lava rock (pumice), Turface, calcined DE, and others.

For long term (especially woody) plantings and houseplants, I use a superb soil that is extremely durable and structurally sound. The basic mix is equal parts of pine bark, Turface, and crushed granite.

The gritty mix:

1 part uncomposted screened pine or fir bark (1/8-1/4")
1 part screened Turface
1 part crushed Gran-I-Grit (grower size) or #2 cherrystone
1 Tbsp gypsum per gallon of soil (eliminate if your fertilizer has Ca)
CRF (if desired)

I use 1/8 -1/4 tsp Epsom salts (MgSO4) per gallon of fertilizer solution when I fertilize if the fertilizer does not contain Mg (check your fertilizer - if it is soluble, it is probable it does not contain Ca or Mg. If I am using my currently favored fertilizer (I use it on everything), Dyna-Gro's Foliage-Pro in the 9-3-6 formulation, and I don't use gypsum or Epsom salts in the fertilizer solution.

If there is interest, you'll find some of the more recent continuations of the thread at the links below:

Post XIV

Post XIII

Post XII

Post XI

Post X

Post IX

PostVIII

If you feel you were benefited by having read this offering, you might also find this thread about Fertilizing Containerized Plants helpful, as well.

If you do find yourself using soils you feel are too water-retentive, you'll find some Help Dealing with Water-retentive Soils by following this embedded link.

If you happen to be at all curious about How Plant Growth is Limited, just click the embedded link.

As always - best luck. Good growing!! Let me know if you think there is anything I might be able to help you with.

Al

NOTES:

<none>
clipped on: 05.26.2012 at 03:55 pm    last updated on: 05.26.2012 at 03:57 pm

peonies, foxglove and a monster columbine

posted by: dahli22 on 06.26.2010 at 07:46 pm in Cottage Garden Forum

White peony with chives.

From Kathy and Brad's garden in 2010

White peony with bees.

From Kathy and Brad's garden in 2010

Pink peony with foxglove.

From Kathy and Brad's garden in 2010

This columbine is enormous.

From Kathy and Brad's garden in 2010

Columbine closer shot.

From Kathy and Brad's garden in 2010

Foxglove and bleeding heart.

From Kathy and Brad's garden in 2010

First dahlia--a red waterlily.

From Kathy and Brad's garden in 2010

Pink peony and foxglove.

From Kathy and Brad's garden in 2010

From Kathy and Brad's garden in 2010

NOTES:

<none>
clipped on: 05.10.2012 at 11:00 pm    last updated on: 05.10.2012 at 11:00 pm

RE: Gift of Hydrangea (Follow-Up #1)

posted by: luis_pr on 04.13.2012 at 08:49 pm in Hydrangea Forum

Choose a location that is not windy and that morning sun/afternoon shade. Plant it about 1-2 weeks after your average date of last frost in Spring (ask your local nurseries if you do not know). Top it off with 3-4" of mulch and fertilize it in May and July. In the fall, apply winter protection techniques to make sure the flower buds that develop around July-August will still be there in the Spring. Water it about 1 gallon of water when a finger inserted to a depth of 4" feels almost dry or dry. Yes, the rear condo location sounds ok.

Hydrangeas do not do well inside the house so try to keep it away from air vents or windy locations. Water it well. Plant it as soon as the possibility of frost has been reduced.

NOTES:

<none>
clipped on: 05.09.2012 at 08:22 pm    last updated on: 05.09.2012 at 08:23 pm

RE: 1/3 acre of weeds! Overwhelmed (Follow-Up #3)

posted by: kimmsr on 02.19.2012 at 07:44 am in Organic Lawn Care Forum

These simple soil tests can be of some help, but you do need to get more organic matter into your soil.
1) Structure. From that soil sample put enough of the rest to make a 4 inch level in a clear 1 quart jar, with a tight fitting lid. Fill that jar with water and replace the lid, tightly. Shake the jar vigorously and then let it stand for 24 hours. Your soil will settle out according to soil particle size and weight. A good loam will have about 1-3/4 inch (about 45%) of sand on the bottom. about 1 inch (about 25%) of silt next, about 1 inch (25%) of clay above that, and about 1/4 inch (about 5%) of organic matter on the top.

2) Drainage. Dig a hole 1 foot square and 1 foot deep and fill that with water. After that water drains away refill the hole with more water and time how long it takes that to drain away. Anything less than 2 hours and your soil drains� too quickly and needs more organic matter to slow that drainage down. Anything over 6 hours and the soil drains too slowly and needs lots of organic matter to speed it up.

3) Tilth. Take a handful of your slightly damp soil and squeeze it tightly. When the pressure is released the soil should hold together in that clump, but when poked with a finger that clump should fall apart.

4) Smell. What does your soil smell like? A pleasant, rich earthy odor? Putrid, offensive, repugnant odor? The more organic matter in your soil the more active the soil bacteria will be and the nicer your soil will smell.

5) Life. How many earthworms per shovel full were there? 5 or more indicates a pretty healthy soil. Fewer than 5, according to the Natural Resources Conservation Service, indicates a soil that is not healthy.

NOTES:

<none>
clipped on: 05.09.2012 at 07:06 pm    last updated on: 05.09.2012 at 07:06 pm